anti-Selective Asymmetric Synthesis of β-Hydroxy-α-amino Acid Esters by the *in situ* Generated Chiral Quaternary Ammonium Fluoride-Catalyzed Mukaiyama-Type Aldol Reaction

Takashi Ooi, Mika Taniguchi, Kanae Doda, Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan Fax: (+81)-75-753-4041, e-mail: maruoka@kuchem.kyoto-u.ac.jp

Received: April 16, 2004; Accepted: July 26, 2004

Abstract: The aldol coupling of ketene silyl acetal **2** derived from the glycinate Schiff base with aldehydes can be efficiently catalyzed by an *in situ* generated, chiral quaternary ammonium fluoride of type **1** under mild, neutral conditions, affording the corresponding *anti*- β -hydroxy- α -amino esters predominantly with excellent enantioselectivities.

Keywords: aldol reaction; asymmetric synthesis; chiral quaternary ammonium salt; diastereoselectivity; β -hydroxy- α -amino acid; potassium fluoride

The occurrence of optically active β -hydroxy- α -amino acids as natural products as well as components of more complex biologically active cyclic peptides has made their synthesis of great importance, especially from the pharmaceutical viewpoint.[1] They have also been used as useful chiral building blocks in organic synthesis. [2-5] Accordingly, numerous studies on the asymmetric synthesis of this class of compounds have been made using different strategies. [6,7] However, the asymmetric aldol strategy employing catalytic amounts of chiral sources is still limited, [8,9] despite its obvious advantage for the simultaneous construction of the primary structure and the stereochemical integrity of β-hydroxy-α-amino acids. In connection with our recent study on the in situ generation of the chiral quaternary ammonium fluoride of type 1 from the corresponding hydrogen sulfate and its utilization for the fluoride ion-catalyzed asymmetric carbon-carbon bond formation reactions, [10] we have been interested in its application to the aldol reaction of the glycine-derived ketene silyl acetal 2 with aldehydes under mild, neutral conditions. [11,12] Here we report the anti-selective, highly enantioselective synthesis of various β-hydroxy-α-amino acid esters based on this approach.

As shown in Scheme 1, a mixture of chiral ammonium hydrogen sulfate $1a^{[10]}$ (2 mol %) and commercially available potassium fluoride (KF, 1 equiv.) in THF was well stirred at room temperature for 1 h. Then, 3-phe-

nylpropanal (2 equivs.) and a toluene solution of ketene silyl acetal $2a^{[11]}$ were added sequentially at $-78\,^{\circ}$ C and continued stirring at $-78\,^{\circ}$ C for 13 h and at $-40\,^{\circ}$ C for 5 h followed by acidic hydrolysis with 1 N HCl afforded the corresponding β-hydroxy-α-amino ester 3a in 51% yield with an *anti/syn* ratio of 1.2:1. The enantiomeric excess of the *anti* isomer was determined to be 85% ee after conversion to its *N*-benzoate. It is of interest that the introduction of electron-withdrawing substituents at the *para*-position of the benzophenone moiety of 2 affected the diastereo- and enantioselectivities, $^{[12c]}$ and that *anti*-3a was obtained with 90% ee in the reaction with the fluoro-substituted ketene silyl acetal 2c (64% yield, anti/syn = 3.3:1).

Based on these results, we examined the effect of the 3,3'-aryl substituents of the catalyst precursor 1 on the stereoselectivity in the reaction of 2c with 3-phenylpropanal. Although the use of **1b**^[10,13] having a 3,4,5-trifluorophenyl group led to a slight decrease of both diastereoand enantioselectivities (entry 1 in Table 1), an improvement of anti selectivity was achieved by employing $\mathbf{1c}^{[12b]}$ (77% yield, anti/syn=8.3:1) with preservation of the excellent enantioselectivity (92% ee for *anti* isomer) (entry 2). The results of this Mukaiyama-type aldol reaction of ketene silyl acetal 2c with other representative aldehydes under the optimized conditions are summarized in Table 1. The high preference for the formation of anti-3 was consistently observed with unbranched as well as branched aldehydes, and the enantioselectivities generally exceeded 90% ee; this is in sharp contrast to the cinchonidine-derived ammonium bifluoride-catalyzed system. [11] In particular, the reaction with isobutyraldehyde proceeded with rigorous relative and absolute stereochemical control, providing a facile entry to (2R,3R)-β-hydroxyleucine (entry 6).^[14]

In summary, we have successfully demonstrated that the *in situ* generated chiral C_2 -symmetrical quaternary ammonium fluoride of type $\mathbf{1}$ efficiently catalyzes the Mukaiyama-type aldol reaction of glycine-derived ketene silyl acetal $\mathbf{2}$ with various aldehydes, giving the corresponding anti- β -hydroxy- α -amino esters predominantly with excellent enantioselectivity. The present catalytic asymmetric aldol strategy is complementary to the

$$(S,S)-1a = (2 \text{ mol }\%) = (2 \text{ equiv}) = ($$

Scheme 1.

Table 1. Asymmetric aldol reactions of 2c with aldehydes catalyzed by chiral ammonium fluoride generated from 1 and KF.[a]

$$\bigcap_{R} + (\rho \text{-F-C}_6 \text{H}_4)_2 \text{C} = N \underbrace{\bigcap_{OSiMe_3} \frac{(S.S) \text{-} 1 \text{ (2 mol \%)}}{\text{THF-toluene}}}_{OSiMe_3} \underbrace{\bigcap_{KF \text{ (1 equiv.)}}^{(S.S) \text{-} 1 \text{ (2 mol \%)}}_{THF-toluene}}_{NH_2} \underbrace{\bigcap_{NH_2}^{OH \text{ OO}}}_{NH_2}$$

Entry	Aldehyde (R)	Catalyst precursor	Conditions [°C, h]	Yield $[\%]^{[b]}$ (anti/syn) $^{[c]}$	% ee ^[d]
1 2	Ph(CH ₂) ₂	1b 1c	-78, 12; -40, 3 -78, 12; -40, 3	76 (3.1:1) 77 (8.3:1)	82 92
3	$CH_3(CH_2)_4$	1c	-78, 12; -40, 3	58 (8.4:1)	91
4	$CH_3(CH_2)_5$	1c	-78, 12; -40, 2	72 (11:1)	90
5	<i>i</i> -Bu	1c	-78, 16; -40, 3	70 (7.2:1)	90
6	<i>i</i> -Pr	1c	-78, 11; -40, 1	65 (6.7:1)	97

[[]a] The reaction was carried out with 2 equivs. of aldehyde in the presence of 2 mol % of (S,S)-1 and 1 equiv. of KF in THF-toluene under the given reaction conditions.

Corey's procedure, [11] certainly revealing the unique feature of our approach based on the use of designer chiral quaternary ammonium salts.

Experimental Section

Representative Procedure for the Aldol Reaction (Entry 2 in Table 1)

A mixture of (*S*,*S*)-**1c** (16.7 mg, 0.01 mmol) and potassium fluoride (KF, 19.3 mg, 0.5 mmol) in THF (1.0 mL) was stirred for 1 h at room temperature under an argon atmosphere and then

cooled to $-78\,^{\circ}$ C. To this mixture was added 3-phenylpropanal (132 µL, 1.0 mmol) followed by dropwise introduction of freshly prepared ketene silyl acetal $2c^{[11]}$ (0.5 mmol) in toluene (1.0 mL). The reaction mixture was stirred at $-78\,^{\circ}$ C for 12 h and at $-40\,^{\circ}$ C for additional 3 h. As the yellow color disappeared, the whole mixture was diluted with water and ether. The ether phase was separated and washed with brine. The organic phase was dried over Na_2SO_4 and concentrated. The resulting crude products were dissolved into THF (8.0 mL) and treated with 1.0 N HCl (1.0 mL) at 0 $^{\circ}$ C for 1 h. After removal of THF under vacuum, the aqueous solution was washed with ether three times and neutralized with $NaHCO_3$. The mixture was then extracted with CH_2Cl_2 three times. The combined extracts were dried over Na_2SO_4 and concentrated. Purification

[[]b] Yield of isolated product.

[[]c] Determined by ¹H NMR analysis.

[[]d] Enantiomeric excess of the major *anti-3*, which was determined by HPLC analysis of its *N*-benzoate using a chiral column (DAICEL Chiralcel OD-H) with hexane-2-propanol or hexane-ethanol as solvent.

of the residue by column chromatography on silica gel (MeOH/ CH₂Cl₂=1:15 as eluent) afforded the corresponding β-hydroxy-α-amino ester **3a** as a mixture of diastereomers; yield: 102 mg (0.385 mmol; 77%, anti/syn=8.3:1); anti-3a:[11] ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26 - 7.29$ (2H, m, Ph), 7.16–7.20 (3H, m, Ph), 3.77 (1H, ddd, J=7.6, 4.4, 3.2 Hz, CHOH), 3.47 (1H, d, J=4.4 Hz, CHNH₂), 2.84–2.91 (1H, ddd, J = 14.0, 9.2, 4.8 Hz, PhCH), 2.65 – 2.73 (1H, dt, J = 14.0, 8.0 Hz, PhCH), 1.85 (3H, br, OH and NH₂), 1.65–1.75 (1H, m, PhCH₂C<u>H</u>), 1.53–1.62 (1H, m, PhCH₂C<u>H</u>), 1.41 (9H, s, t-Bu); 13 C NMR (100 MHz, CDCl₃): $\delta = 172.8$, 141.8, 128.4, 128.3, 125.7, 81.7, 71.0, 59.0, 33.8, 32.0, 28.1; IR (neat): v =3373, 2977, 2934, 1730, 1602, 1456, 1367, 1252, 1153, 1051, 849, 748, 700 cm⁻¹; syn-**3a**:^[11] ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26 - 7.29$ (2H, m, Ph), 7.16 - 7.22 (3H, m, Ph), 3.70 (1H, ddd, J=7.6, 5.2, 4.8 Hz, CHOH), 3.24 (1H, d, J=5.2 Hz, $CHNH_2$), 2.82-2.90 (1H, ddd, J=13.6, 9.0, 6.2 Hz, PhCH), 2.67-2.74 (1H, ddd, J=13.6, 8.8, 7.2 Hz, PhCH), 2.17 (3H, br, OH and NH₂), 1.78–1.85 (2H, m, PhCCH₂), 1.46 (9H, s, t-Bu); 13 C NMR (100 MHz, CDCl₃): $\delta = 173.2$, 141.9, 128.3, 128.2, 125.7, 81.8, 71.4, 58.8, 36.0, 32.0, 28.1; IR (neat): v= 3377, 2977, 2934, 1730, 1603, 1456, 1393, 1369, 1250, 1155, 847, 750, 700 cm^{-1} . The enantiomeric excess of the major *anti* isomer was determined to be 92% ee after conversion to its *N*-benzoate with benzoyl chloride and pyridine in CH₂Cl₂. HPLC conditions: DAICEL Chiralcel OD-H, hexane/2-propanol=12:1, flow rate=1.0 mL/min, retention time; 8.8 min (minor isomer) and 15.5 min (major isomer).

Acknowledgements

We are grateful to Dr. Manabu Horikawa (Suntory Institute for Bioorganic Research) for valuable information regarding the preparation of 2. This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. K. D. thanks the Japan Society for the Promotion of Science for Young Scientists for a Research Fellowship.

References and Notes

- a) M. A. Blaskovich, G. Evindar, N. G. W. Rose, S. Wilkinson, Y. Luo, G. A. Lajoie, J. Org. Chem. 1998, 63, 3631, and references therein; b) R. Nagarajan, Ed. Glycopeptide Antibiotics; Marcel-Dekker: New York, 1994; c) Amino Acids, Peptides and Proteins; Special Periodical Reports; Vols. 1–28, Chemical Society, London, 1968–1995.
- [2] a) G. M. Coppola, H. F. Schuster, Asymmetric Synthesis: Construction of Chiral Molecules Using Amino Acids; John Wiley & Sons, Toronto, 1987; b) A. Goleciowski, J. Jurczak, Synlett 1993, 241; c) J.-P. Genet, Pure Appl. Chem. 1996, 68, 593.
- [3] For the preparation of β-lactams, see: a) B. T. Lotz, M. J. Miller, *J. Org. Chem.* **1993**, *58*, 618; b) M. J. Miller, *Acc. Chem. Res.* **1986**, *19*, 49.
- [4] β-Halo-α-amino acids: a) R. Badorrey, C. Cativiela, M. D. Diaz-de-Villegas, J. A. Galvez, *Tetrahedron: Asymmetry* 2000, 11, 1015; b) F. A. Davis, V. Srirajan,

- D. D. Titus, *J. Org. Chem.* **1999**, *64*, 6931; c) S. V. Pansare, J. C. Vederas, *J. Org. Chem.* **1987**, *52*, 4804.
- [5] Aziridines: D. Tanner, Angew. Chem. 1994, 106, 625; Angew. Chem. Int. Ed. 1994, 33, 599.
- [6] For recent representative examples of Sharpless AE, see: T. Nagamitsu, T. Sunazuka, H. Tanaka, S. Omura, P. A. Sprengeler, A. B. Smith III, J. Am. Chem. Soc. 1996, 118, 3584; of Sharpless AD, see: H. Shao, J. K. Rueter, M. Goodman, J. Org. Chem. 1998, 63, 5240; of Sharpless AA, see: H. Park, B. Cao, M. M. Joullié, J. Org. Chem. **2001**, *66*, 7223; of alkylation of β -oxy- α -amino aldehydes, see: N. Okamoto, O. Hara, K. Makino, Y. Hamada, Y. J. Org. Chem. 2002, 67, 9210; of hydrogenation, see: R. Kuwano, S. Okuda, Y. Ito, J. Org. Chem. 1998, 63, 3499; of dynamic kinetic resolution, see: K. Makino, T. Goto, Y. Hiroki, Y. Hamada, Angew. Chem. 2004, 116, 900; Angew. Chem. Int. Ed. 2004, 43, 882; of rearrangements, see: C. Tomashini, A. Vecchione, Org. Lett. 1999, 1, 2153; of selective hydrolysis of aziridine carboxylate, see: F. A. Davis, G. V. Reddy, Tetrahedron Lett. 1996, 37, 4349; of electrophilic amination, see: G. Guanti, L. Banfi, E. Narisano, Tetrahedron 1988, 44, 5553; of the Strecker reaction, see: F. A. Davis, V. Srirajan, D. L. Fanelli, P. Portonovo, J. Org. Chem. 2000, 65, 7663.
- [7] Aldol reaction: a) J. B. MacMillan, T. F. Molinski, Org. Lett. 2002, 4, 1883; b) Y. N. Belokon, K. A. Kochetkov, N. S. Ikonnikov, T. V. Strelkova, S. R. Harutyunyan, A. S. Saghiyan, Tetrahedron: Asymmetry 2001, 12, 481; c) S. Caddick, N. J. Parr, M. C. Pritchatd, Tetrahedron Lett. 2000, 41, 5963.
- [8] a) M. Sawamura, Y. Nakayama, T. Kato, Y. Ito, J. Org. Chem. 1995, 60, 1727; b) Y. Ito, M. Sawamura, E. Shirakawa, K. Hayashizaki, T. Hayashi, Tetrahedron 1988, 44, 5253; c) H. Suga, K. Ikai, T. Ibata, Tetrahedron Lett. 1998, 39, 869; d) D. A. Evans, J. M. Janey, N. Magomedov, J. S. Tedrow, Angew. Chem. 2001, 113, 1936; Angew. Chem. Int. Ed. 2001, 40, 1884.
- [9] a) B. G. Jackson, S. W. Pedersen, J. W. Fisher, J. W. Misner, J. P. Gardner, M. A. Staszak, C. Doecke, J. Rizzo, J. Aikins, E. Farkas, K. L. Trinkle, J. Vicenzi, M. Reinhard, E. P. Kroeff, C. A. Higginbotham, R. J. Gazak, T. Y. Zhang, *Tetrahedron* 2000, 56, 5667; b) T. Kimura, V. P. Vassilev, G.-J. Shen, C.-H. Wong, *J. Am. Chem. Soc.* 1997, 119, 11734; see also: c) T. D. Machajewski, C.-H. Wong, *Angew. Chem.* 2000, 112, 1406; *Angew. Chem. Int. Ed.* 2000, 39, 1352; d) N. Wymer, E. J. Toone, *Curr. Opin. Chem. Biol.* 2000, 4, 110.
- [10] a) T. Ooi, K. Doda, K. Maruoka, *Org. Lett.* **2001**, *3*, 1273; see also: b) T. Ooi, H. Sugimoto, K. Doda, K. Maruoka, *Tetrahedron Lett.* **2001**, *42*, 9245.
- [11] For a pioneering study, see: M. Horikawa, J. Busch-Petersen, E. J. Corey, *Tetrahedron Lett.* **1999**, *40*, 3843.
- [12] For the direct aldol reaction under phase-transfer conditions, see: a) C. M. Gasparski, M. J. Miller, *Tetrahedron* 1991, 47, 5367; b) T. Ooi, M. Taniguchi, M.; Kameda, K. Maruoka, *Angew. Chem.* 2002, 114, 4724; *Angew. Chem. Int. Ed.* 2002, 41, 4542; with heterobimetallic catalysts: c) N. Yoshikawa, M. Shibasaki, *Tetrahedron* 2002,

- 58, 8289; see also: d) M. Shibasaki, N. Yoshikawa, *Chem. Rev.* **2002**, *102*, 2187.
- [13] a) T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139; b) T. Ooi, M. Takeuchi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2000, 122, 5228.
- [14] The absolute configuration of *anti-***3** (R = *i*-Pr) was established by comparison of its optical rotation with that reported. [11]

asc.wiley-vch.de